martes, 18 de julio de 2017

el reciente crecimiento de la tendencia hacia el desarrollo y utilización de sistemas de diagnóstico de imagen

Un artículo de CNN titulado What happens when automation comes for highly paid doctors comenta el reciente crecimiento de la tendencia hacia el desarrollo y utilización de sistemas de diagnóstico de imagen – radiografías, tomografías, resonancias magnéticas, ultrasonidos, etc. tradicionalmente interpretados por un médico, un especialista o un radiólogo – para su interpretación mediante sistemas que procesan el diagnóstico mediante visión computerizada y algoritmos de machine learning, entrenados a partir del extenso archivo recopilado a lo largo de muchos años de práctica.
El uso de herramientas de diagnóstico mediante imagen ha ido creciendo a lo largo del tiempo, y además de ser profusamente utilizado, supone un elemento muy importante del coste: donde antes un médico tenía que procesar manualmente unas pocas imágenes, ahora es perfectamente habitual que en una sola prueba se obtengan cientos o incluso miles de imágenes en finas capas, en procesos que pueden llegar a ser profundamente aburridos y que incrementan la probabilidad de error debido al cansancio o la pérdida de atención.
¿Puede un algoritmo ser capaz de reconocer en una imagen elementos de diagnóstico? Sin duda. ¿Puede, además, llegar a hacerlo mejor que un profesional especialmente entrenado para ello? Todo indica que, a medida que esos algoritmos son entrenados con más y más imágenes y sus posteriores resultados diagnósticos, esa posibilidad se convierte en una realidad, y que muy probablemente estemos ante mecanismos en los que la probabilidad de pasar por alto un indicio con trascendencia diagnóstica en una imagen sea significativamente menor que en el caso de que ese diagnóstico sea llevado a cabo por un humano.
Precisamente sobre este tema estuve hablando en el pasado Netexplo con Pooja Rao, co-fundadora de la startup india Qure.ai, que fue una de las compañías que obtuvieron galardón y la que me pidieron que entrevistase en el escenario. Pooja contaba con la experiencia perfecta para comentar el tema: además de ser médico de formación, había co-fundado una compañía dedicada al diagnóstico de imagen mediante machine learning, y trabajaba precisamente con médicos a los que trataba de convencer para que contribuyesen al entrenamiento de los algoritmos ofrecidos por su compañía, con un argumento claro: la posibilidad de poder obtener mejores diagnósticos, más seguros, más consistentes y con menos posibilidades de pasar por alto elementos clave.
Una imagen de diagnóstico médico es un fichero digitalizable o, cada vez más, directamente digital. Convertir esas secuencias de píxeles en elementos capaces de ser procesados algorítmicamente es algo que cae perfectamente dentro de las posibilidades del machine learning, en un ámbito, el de la imagen, en el que ya se han obtenido numerosos progresos. Que lleguemos a un momento en el que el análisis de una imagen se lleve a cabo directamente tras su obtención, o incluso durante la misma – para permitir un muestreo más exhaustivo de determinadas áreas – o, incluso, a un momento en el que los médicos directamente pierdan la capacidad de utilizar ese método diagnóstico por falta de práctica es algo que, a día de hoy, cabe perfectamente dentro de los escenarios posibles. En este momento, un algoritmo es capaz de procesar e interpretar una resonancia magnética de corazón, por ejemplo, en unos quince segundos, un examen que puede necesitar unos 45 minutos cuando lo lleva a cabo un cardiólogo o radiólogo.
En ese caso, ¿qué papel pasa a tener el médico especialista? Sencillamente, el de encargar la prueba diagnóstica e interpretar el análisis de la misma llevado a cabo no por sí mismo o por un radiólogo, sino por un algoritmo. El propio radiólogo pasaría a ser un interpretador avanzado de esos diagnósticos, un gestor de un instrumento que sigue los indicios marcados por un algoritmo y trata de ofrecerle elementos adicionales de diagnóstico, o tal vez, el que lleva a cabo un segundo análisis manual basado en los indicios encontrados por el algoritmo. ¿Realmente vemos ese proceso como una sustitución, o más bien como una asistencia especializada que mejora las capacidades del facultativo? ¿Perderían los radiólogos su trabajo, o simplemente deberían reciclarse para aprender a aprovechar una herramienta diagnóstica mucho más potente, capaz de ver lo que un ojo clínico bien entrenado anteriormente no veía? ¿Llegaremos a un momento en el que el diagnóstico mediante imagen sea algo que debe necesariamente ser llevado a cabo por un algoritmo, porque mejore sensiblemente el número de ocasiones en las que un indicio se pasa por alto o se dé lugar a un número menor de falsos positivos? ¿Llevará el hecho de que sea un algoritmo el que procesa las imágenes a que se puedan obtener muchas más, dada la mayor facilidad de procesamiento derivada de que que no sea un médico quien deba revisarlas todas una por una, y por tanto, termine redundando en mejores diagnósticos? ¿Alguien podría llegar a ver un proceso así como negativo?



This post is also available in English in my Medium page, “Medicine and machine learning: replacing or assisting?”