sábado, 22 de julio de 2017

Los temibles peligros de la inteligencia artificial

Mi columna en El Español de esta semana se titula “Inteligencia artificial y miedos irracionales” (pdf), y es un comentario al hilo de las declaraciones de Elon Musk, sin duda una de las personas más influyentes, respetadas y seguidas del actual entorno tecnológico, en las que reclama “regulación para la amenaza existencial que supone la inteligencia artificial, antes de que sea demasiado tarde“.
Que una petición de este tipo venga nada menos que de la persona que convierte en realidad retos tecnológicos tan complejos como el vehículo eléctrico, la generación de energía sostenible o la exploración espaciales algo que resulta, en principio, inquietante. Sin duda, Elon Musk no es un indocumentado que opine desde la barra de un bar. Que su preocupación se una, además, a las de personas como el físico teórico Stephen Hawking o el fundador de Microsoft, Bill Gates, podría desencadenar toda una epidemia de miedos y prevenciones. Sin embargo, el hecho de que ninguno de ellos tenga experiencia concreta y directa en la investigación o el desarrollo de este tipo de tecnología es algo que debe más bien llevarnos a considerarlo más bien como un caso de libro del llamado argumento o falacia de autoridad: el hecho de que sean personas indudablemente destacadas en otros ámbitos de la ciencia o la industria no convierte necesariamente sus preocupaciones en elementos que no puedan ser discutidos o puestos en duda.
En múltiples ocasiones he hablado de las enormes posibilidades del machine learning, la parte que considero en este momento más real y prometedora de eso que se ha dado en llamar inteligencia artificial y que no deja de ser un conjunto laxo de tecnologías que algunos piensan que terminarán llevando a que una máquina piense como una persona. Por el momento, las máquinas son capaces de muchas cosas: el hecho de que sean capaces de aprender a partir de un conjunto de datos dentro de un escenario sujeto a una serie de restricciones y reglas claras e inmutables, por ejemplo, es algo que lleva a cientos de compañías de todo el mundo a pagar por herramientas que permiten tal posibilidad, y que hacen que puedan optimizar procesos y convertirlos en ahorros o en ganancias de eficiencia. Las máquinas son capaces de reconocer imágenes, de participar en conversaciones, y por supuesto, como es bien sabido por su uso como argumento publicitario, son capaces de ganar a los humanos en cosas como el ajedrez, el Jeopardy, el Go o el póker. Sin embargo, en todos esos casos seguimos hablando de lo mismo: de la dedicación de la máquina a una tarea que se intenta limitar de todas las maneras posibles a un escenario completamente cognoscible, a un conjunto de reglas fijas y un contexto estable en el que, además, sea posible acumular y analizar una gran cantidad de datos. Extrapolar estos casos para imaginar una inteligencia “completa”, un robot capaz de tratar de manera inteligente una situación general, no limitada ni restringida por una serie de reglas fijas, es algo tentador, pero no real. Pasar de ver algoritmos capaces de construir procesos de aprendizaje en tareas específicas a imaginarse a Skynet, esa red de ordenadores de Terminator convencida de que debe acabar con la raza humana es algo indudablemente fácil, pero para considerarlo una realidad es preciso pasar por un sinnúmero de saltos conceptuales que están aún muy, pero que muy lejos, si es que en algún momento llegan a tener algún viso de realidad.
Reclamar regulación sobre una tecnología o conjunto de tecnologías antes de que se desarrollen es un problema. La regulación parte de una base muy problemática, y es que muy pocas veces se desarrolla de la manera adecuada, y tiende a basarse en la restricción de posibilidades. Eso la convierte, por un lado, en algo por lo general imposible de llevar a ejecución en un mundo en el que esa regulación tiene en prácticamente todos los casos un ámbito estrictamente territorial – los intentos de regulación a nivel global son pocos y, por lo general, con desigual nivel de cumplimiento – y, por otro, en una manera de identificar los elementos que permitirían, en caso de obtenerse, generar una supuesta ventaja. Regular – o mejor dicho, restringir – el uso de transgénicos en Europa, por ejemplo, o de tecnologías de manipulación genética en otros países es algo que ya está siendo activamente utilizado en otros países para obtener ventajas tangibles en términos de productividad y de avance científico. Plantear que sistemas regulatorios que resultan tan malos e ineficientes se apliquen a un conjunto de tecnologías con tanto potencial, y generar una especie de histeria colectiva en torno a la posibilidad de robots más inteligentes que las personas desplazándose por las calles y dedicándose a matar todo lo que se mueve, como si algo así fuese a llegar pasado mañana, me parece inadecuado y peligroso. Y cuantas más personas conozco trabajando directamente en el ámbito del machine learning, de la IA o de la robótica, más me convenzo de que es así. Por muchas películas que veamos, Skynet no está ni se le espera.
Esperemos que esas peticiones de regulación no lleguen a ningún político temeroso e inspirado. Y mientras tanto, sigamos trabajando.